Abstract

A non-linear mathematical model is presented for the Equation of Motion of the Water Column inside circular cylindrical structures in different cases, comparing to previous models in literature. Experimental model tests were carried out investigating the water column decay under given initial conditions, and an analysis is performed for each cycle showing the dynamic behaviour of OWC evolving in time. The results show asymmetric pattern in the time series acquired in the decay tests as a consequence of variations of the Added Length and quadratic viscous damping as the direction of the flow changes, as observed in previous studies.

A general procedure is proposed to assess the unknown parameters including the quadratic damping viscous coefficients through the concept of “equivalent linear harmonic” as a linearisation of such terms, enlightening its dependence on the motion amplitude as well as the water column draft.

Experimental data for the OWC response under a set of incoming regular waves is also presented, comparing the results to numerical simulation through a solver based on the estimation of the damping coefficients obtained in the decay tests.

This content is only available via PDF.
You do not currently have access to this content.