Abstract
In deepwater drilling, the rheology of traditional drilling fluid is uncontrollable since the fluid usually mixes with brine and encounters low temperature. A solution may be to use the newly designed brine-based fuzzy-ball drilling fluids (BFDFs) since these have a well-adapted rheology under high salinity and low temperature condition. This has the potential to make drilling safer and more efficient.
In this experiment, the rheological properties of BFDFs under test conditions were characterized with a rheometer by varying salinity (2 to 20 mass%) and temperature (4 to 80 °C). The rheological parameters considered are apparent viscosity (AV), plastic viscosity (PV), yield point (YP), and θ6 reading. To characterize the magnitudes of changes of the rheological parameters and their low temperature dependence, their ratios at 4 and 25 °C, and 4 and 80 °C were calculated.
The results showed that the apparent viscosity (AV), the plastic viscosity (PV), the yield point (YP), and θ6 reading of BFDFs increased slightly with the decrease of salinity and temperature. The ratios of rheological parameters at 4 and 25 °C were close to unity, while the ratios at 4 and 80 °C were about two. The flow behavior of BFDFs under high salinity and low temperature condition was stable. Therefore, brine could be used as the base fluid for BFDFs. Theoretically, the flow behavior of BFDFs under low temperature condition seems to follow the Herschel-Bulkley model. Practically, the tests indicated that the BFDFs possess a strong tolerance to sandstone cuttings and Cabentonite, an excellent inhibitive property to shaly cuttings, weak corrosive characteristics against N80 casing steel, excellent lubricity properties, and remarkable biodegradability.
In summary, the empirical results showed that the newly designed fuzzy-ball working fluid can use brine instead of fresh water as based fluid and maintain remarkable properties under high salinity and low temperature condition. Properties of BFDFs could basically satisfy the requirement of deepwater drilling work.