Abstract

Steel Lazy wave risers are being increasingly used for deep water applications due to better strength and fatigue performance in the touchdown zone compared to steel catenary risers. Several parameters govern the design of steel lazy wave risers including the length of the catenary from hang-off to start of buoyancy section and the length of the buoyancy section. In this paper, a parametric study is performed to investigate the trends in strength and fatigue performance of steel lazy wave risers with change in configuration parameters. A normative cost assessment is also performed to show the impact of these design variables on overall cost of the system.

Dynamic analysis is performed to check the change in strength and fatigue performance of steel lazy wave risers as the configuration parameters are changed. The results from the parametric study will assist in designing steel lazy wave risers which satisfy the strength and fatigue design criteria.

This content is only available via PDF.
You do not currently have access to this content.