Abstract
The flexible riser top connection to the floating production platform is a critical region for fatigue lifetime (re)assessment. The interface with the I-tube and its curved sleeve combined with the gap between the riser and bend stiffener may lead to different curvature distribution when compared to the traditional modeling approach that considers the bend stiffener attached to the pipe. For a more accurate top connection assessment, the flexible riser bending hysteresis can also be directly incorporated in the global dynamic analysis helping to reduce curvature amplitude and lifetime prediction conservatism. This work investigates a 7” flexible riser-bend stiffener top connection with I-tube interface by performing irregular wave global dynamic analyses with the OrcaFlex package and considering a nonlinear bending moment vs curvature riser behavior obtained from a detailed cross sectional model developed in Abaqus. OrcaFlex curvature distribution results are also compared with a quasi-static finite element model that uses an elasto-plastic formulation with kinematic hardening to represent riser hysteresis through an equivalent beam model. A good curvature distribution correlation is observed for both top connection models (OrcaFlex x Abaqus) in the bend stiffener area with reduced amplitudes when riser bending hysteresis is considered.