Abstract
Maintaining the integrity of an aging offshore facility often requires the repair of corrosion. With advances in adhesive technology, epoxy adhesives (cold bond repairs) are increasingly being adopted to repair corrosion damage on offshore structures. Structural elements, protection barriers, and occupied buildings, for example a platform living quarters, designated as safety critical often must comply with project or facility performance standards that specify minimum design accidental loading (e.g., from fire, explosions, or impact). In addition to satisfying conventional structural design criteria, a corrosion repaired structure must also perform within acceptable limits when subjected to accidental loads. The present study outlines approaches to assess the performance of cold bond repairs subjected to accidental explosion loads. The living quarters considered in this study featured approximately 50 individual cold bond repairs; each arbitrarily located over the building’s external surfaces. Under accidental blast conditions, failure of a cold bond repair was deemed unacceptable due to the threat of pressure leakage into the building’s interior. As such, the study demanded an analysis capable of considering both the global response of the living quarters as well as the local response of cold bond repairs. There have been several studies conducted by researchers around the globe to evaluate the response characteristics of adhesive bonds. However, these studies are largely focused on experimental, local, and micromechanical analysis of adhesively bonded materials. Numerical analysis of adhesive bonds, for purposes of global structural system response assessments, especially in the case of accidental loading, appear to be nonexistent in available literature. Inspired by this gap, we present a case study involving an assessment of global structural performance of a living quarters building repaired with cold bond adhesives subject to loading due to accidental and rare events. In this study, the local behavior of cold bond adhesives was calibrated using numerical simulations of the ASTM tests specified by the adhesive vendor. The calibrated properties were implemented in finite element analyses used to validate cold bond seal plate repairs at various locations on the living quarters building. The study includes a discussion about the methods and approaches used to model cold bond repairs in a practical and efficient manner. The approach outlined herein provides a useful framework that can be adapted to similar assessments by a practicing engineer responsible for blast analysis of marine structures.