This study attempts to examine the potential for computational fluid dynamics (CFD) as an estimation tool of the hydrodynamic performance of submarines. The DARPA SUBOFF model is adopted as a benchmark because of its availability of experimental data for validation. The computational modeling is based on the Reynolds Average Navier Stokes (RANS) equations solved by a finite volume method. Verification and validation of the straight-ahead resistance and the forces and moment exerted on the hull in steady translation and turn with a drift angle were conducted in accordance with the published methodology and procedure. The process to have determined the computational setups is described. Furthermore, the computational results as a function of velocity and drift angle are presented and compared with available experimental data. In conclusion, the present CFD method can be used as an estimation tool for the straight-ahead resistance at various velocities in model scale for multiple configurations.

This content is only available via PDF.
You do not currently have access to this content.