Abstract

Accurate prediction for the liquefaction depth of a porous seabed is crucial to the design of shallow foundations; nevertheless most previous studies are predominantly limited to wave-only conditions. In this study, the combined wave-current induced instantaneous liquefaction of a sandy seabed is investigated analytically. The explicit expression of liquefaction depth under combined wave-current loading condition is derived, which can converge to that under the linear wave condition when the current velocity approaches zero. Parametric study indicates that the effects of imposing a current onto progressive waves on the distribution of excess pore pressures and the corresponding liquefaction depth are unneglectable, especially for the opposite current conditions.

This content is only available via PDF.
You do not currently have access to this content.