To accurately predict the critical loads due to wind and wave is one of the common challenges in designing a floating offshore wind turbine (FOWT). The fully-coupled aero-hydrodynamic simulation of a floating offshore wind turbine, the NREL-5MW baseline wind turbine mounted on a semi-submersible floating platform, is conducted with two methods. Firstly, the in-house code naoe-FOAM-os-SJTU, which is developed on the open source platform OpenFOAM and coupled with the overset grid technique, is employed for the directly CFD computations. And another in-house code FOWT-UALM-SJTU developed by coupling the unsteady actuator line model (UALM) with naoe-FOAM-SJTU is also utilized for coupling simulations. In both models, the three-dimensional Reynolds Averaged Navier-Stokes (RANS) equations are solved with the turbulence model k-ω SST, and the Pressure-Implicit with Splitting of Operations (PISO) algorithm is applied to solve the pressure-velocity coupling equations.

Both two solvers provide reasonable results of main aerodynamic loads as well as the main hydrodynamic forces. The FOWT-UALM-SJTU solver achieves better computational efficiency by simplifying the blade structure as actuator line models, while the naoe-FOAM-os-SJTU solver provides more accurate detailed flow information near the turbine blades.

This content is only available via PDF.
You do not currently have access to this content.