Float-over deck installation involves multi-body interactions under the wave excitations, such as the nonlinear impacts between the barge and deck via the Deck Support Units (DSUs) and between deck and substructure via the Leg Mating Unit (LMUs). These nonlinear impacts can only be analysed in the time-domain. This paper develops an efficient two-body heaving impact model based on the Cummins equation to study the nonlinear impact behaviour of float-over deck installation. In this model, the convolution term of the Cummins equation is replaced by state-space model such that the efficiency of time-domain modelling can be greatly enhanced. Both the DSUs and LMUs, serving as the shock absorbing devices, are modelled as linear compression-only springs with limited carrying capacity. When the carrying capacity of DSU and LMU is reached, direct contact between deck and barge and between deck and substructure are also modelled by using two harder compression-only springs. The established model is applied to study the nonlinear dynamics of the float-over system during the mating stage that is divided into five stages according to the percentage of deck load transferred to the substructure. Bifurcation diagram is also applied to demonstrate the nonlinear behaviour associated with the deck and barge subjected to LMU and DSU impacts. Hard impacts, namely the direct impacts between the deck and barge and between the deck and substructure, together with high frequency vibrations are found to occur at the start and end of the mating stage. The motion pattern of the deck evolving from periodic motions into chaotic motions is identified. In addition, the period-doubling phenomenon is also observed.
Skip Nav Destination
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
June 17–22, 2018
Madrid, Spain
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-5132-6
PROCEEDINGS PAPER
Numerical Simulation of the Complex Impact Behavior of Float-Over Deck Installation Based on an Efficient Two-Body Heaving Impact Model
Meiyan Zou,
Meiyan Zou
Wuhan University of Technology, Wuhan, China
Search for other works by this author on:
Ling Zhu,
Ling Zhu
Wuhan University of Technology, Wuhan, China
Search for other works by this author on:
Mingsheng Chen
Mingsheng Chen
Wuhan University of Technology, Wuhan, China
Search for other works by this author on:
Meiyan Zou
Wuhan University of Technology, Wuhan, China
Ling Zhu
Wuhan University of Technology, Wuhan, China
Mingsheng Chen
Wuhan University of Technology, Wuhan, China
Paper No:
OMAE2018-78029, V11AT12A033; 9 pages
Published Online:
September 25, 2018
Citation
Zou, M, Zhu, L, & Chen, M. "Numerical Simulation of the Complex Impact Behavior of Float-Over Deck Installation Based on an Efficient Two-Body Heaving Impact Model." Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Volume 11A: Honoring Symposium for Professor Carlos Guedes Soares on Marine Technology and Ocean Engineering. Madrid, Spain. June 17–22, 2018. V11AT12A033. ASME. https://doi.org/10.1115/OMAE2018-78029
Download citation file:
37
Views
Related Proceedings Papers
Related Articles
Shooting and Arc-Length Continuation Method for Periodic Solution and Bifurcation of Nonlinear Oscillation of Viscoelastic Dielectric Elastomers
J. Appl. Mech (January,2018)
Numerical Investigation of Nonlinear Dynamics of a Pneumatic Artificial Muscle With Hard Excitation
J. Comput. Nonlinear Dynam (April,2020)
Related Chapters
Vibration Analysis of the Seated Human Body in Vertical Direction
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Real-Time Prediction Using Kernel Methods and Data Assimilation
Intelligent Engineering Systems through Artificial Neural Networks
Pressure Waves for Diagnostics and Therapy
Pressure Oscillation in Biomedical Diagnostics and Therapy