Wave diffraction-radiation by a porous body is investigated here. Linear potential flow theory is used and the associated Boundary Value Problem (BVP) is formulated in frequency domain within a linear porosity condition. First, a semi-analytical solution for a truncated porous circular cylinder is developed using the dedicated eigenfunction expansion method. Then the general case of wave diffraction-radiation by a porous body with an arbitrary shape is discussed and solved through Boundary Integral Equation Method (BIEM).
The main goal of these developments is to adapt the existing diffraction-radiation code (HYDROSTAR) for that type of applications. Thus the present study of the porous cylinder consists a validation work of (BIEM) numerical implementation. Excellent agreement between analytical and numerical results is observed. Porosity influence on wave exciting forces, added mass and damping is also investigated.