A drilling fluid for drilling deviated wellbores must provide adequate hole cleaning efficiency for all well angles relevant to the operation. For angles near vertical, experience show that hole cleaning is straight forward. In wellbore angles larger than, say, 45 degrees hole cleaning is more difficult. Cuttings beds are formed and at some well angles these beds may avalanche during circulation stops etc.

This paper presents results from laboratory tests with injected cuttings using a low viscosity oil based drilling fluid with micronized grained barite as weight material. The fluid is designed for highly deviated wells with low ECD requirements and the cuttings transport performance through relevant wellbore inclinations was investigated.

The experiments have been performed under realistic conditions. The flow loop includes a 10 meters long test section with 2” OD freely rotating steel drill string inside a 4” ID wellbore made of steel, representing a cased wellbore. Sand particles were injected while circulating the drilling fluid through the test section. Experiments were performed in three wellbore inclinations: 48, 60 and 90 degrees from vertical.

Results show that hole cleaning in absence of drill pipe rotation is significantly improved if the well angle is less than a critical angle. This critical angle appears to be less than 60 degrees from vertical. Further result show that this critical inclination angle is dependent to the drill string rotation rate and the annular flow velocity.

This content is only available via PDF.
You do not currently have access to this content.