One current methodology for Carbon Capture and Storage (CCS) involves pumping carbon dioxide (CO2) into a depleted oil and gas reservoir, usually via an existing well. Permanence of the storage in this case relies on the integrity of the reservoir and also the avoidance of leakage at the points of entry. Two different cementing procedures are involved in the latter problem: primary cementing and squeeze cementing. Here we consider how to track the interface between two fluids during primary cementing. The main idea is to exploit the density difference between successive fluids pumped in order to design a tracer particle to sit at the interface. Although apparently trivial, such particles must also overcome strong secondary flows in order to remain in the interface. We provide a proof of concept analysis of this situation assuming the displacement involves laminar flows of two Newtonian fluids in a narrow vertical annulus and demonstrate its feasibility.

This content is only available via PDF.
You do not currently have access to this content.