Water-based drilling mud is one of the commonly used fluid systems for drilling operations. The loss of drilling fluid in porous media and fractured formations have been one of the industry’s focus in the past decades. However, the dynamics and constantly changing wellbore conditions push the boundaries for more research into accurate quantification and mitigation methods for fluid loss. In the design and development of drilling fluids, most test conditions are kept constant during fluids property testing. Drilling fluid loss and rheological parameters are determined experimentally at constant test conditions, and according to the combination of mud additives, rather than a comprehensive approach. In addition, conventional methods of quantifying drilling fluid loss properties for field application can be is time-consuming, considering that multiple factors impact fluid loss.

This study presents a statistical engineering approach for pore-scale characterization of water-based mud (WBM) invasion. The methods used in this research are: special case of factorial design of experiment (DoE), analysis of variance (ANOVA), and regression. Important field parameters based on previous studies and industry recommendations were carefully integrated in the DoE and result analyses. These parameters include but not limited to: porous media type, temperature, type of lost circulation material (LCM), concentration of LCM, drilling string rotary speed, and eccentricity. Ceramic filter tubes were used for the first set of experiments and Upper Grey sandstone rock samples were used for the second set of experiments. The statistical analyses performed in this study were based on a 95% confidence interval (CI). The results show that for single factor interpretation, increase in temperature and rotary speed increased dynamic fluid invasion significantly. Increase in LCM concentration resulted to a significant decrease in fluid invasion. LCM concentration and rotary speed interaction revealed a significant decrease in fluid invasion. LCM concentration and temperature interaction significantly increased fluid invasion. Rotary speed and temperature interaction also increased fluid invasion significantly. The three-factor interaction effect of LCM concentration, rotary speed, and temperature was not significant in reducing fluid invasion. For the conditions used in this study, the regression analysis showed that dynamic fluid invasion in Upper Grey sandstone can be explained from variation in LCM concentration and rotary speed. The results and methods from this study can provide reliable information for drilling fluids design and selecting operating conditions for field application.

This content is only available via PDF.
You do not currently have access to this content.