The paper provides considerations for a novel unmanned underwater vehicle class that offers new options to the offshore industries and marine science in matters of endurance, payload capacity, development time and economic viability. Today, different mission scenarios require different underwater vehicles. By applying modularization approach to the development of modular product classes, another way to design such vehicles is shown. Radical modularization of the vehicle enables collaborative as well as independent development of payload modules by industry or science. The design idea allows the combination of proven basic modules with novel mission modules. This allows assigning development activities of mission modules to diverse 3rd-party developers or customers. Topics covered in this paper are related to potential missions and the requirements they make on the vehicle. An evaluation of application scenarios considering the technical challenges vs. their economical relevance is made. The requirements for the MUM system are identified by analyzing the mission procedures regarding specific scenarios. The modular design method and challenges to validate feasibility of an extreme number of possible vehicle variants follow. Examples of variant drivers like diving depth or vehicle range as well as possible solutions will be discussed. The topics covered are the basis for further work within the three year research project MUM – Large Modifiable Underwater Mothership.

This content is only available via PDF.
You do not currently have access to this content.