Submarine is usually equipped with two different control device arrangements, namely a cruciform and a X rudder configuration. In this paper, numerical simulations of the DARPA Suboff submarine and its retrofitted submarine with a X rudder configuration are presented. Turning simulations in model scale were studied to compare the turning abilities of the two different control device arrangements. The computations were performed with a house viscous CFD solver based on the conservative finite difference method. In the solver, RANS equation are solved coupled with six degrees of freedom (6DOF) solid body motion equations of the submarine in real time. The structured dynamic overlapping grids were used to simulate the real-time changes of the attitude of the submarine and the rotation of the rudder. The volume force method was used to replace the real propeller to realize the self-propelled movement of submarine. In the free running maneuvering simulations, the submarines move at the same initial velocity and rudder angle, restricted to the horizontal plane with four degrees of freedom (4DOF). Comparisons of the trajectory and kinematic parameters including relative turning radius and turning period between the two cases were presented in this paper. The results show that, compared with the cruciform rudder configuration, the X rudder configuration has obvious advantages for submarine in the turning abilities.

This content is only available via PDF.
You do not currently have access to this content.