When under influence of an incident wave system, any floating body presents a general motion with all six degrees of freedom, unless it presents some kind of restrains on it. For a free moving body, the center of rotation will depend on the force distribution and might not coincide with its center of gravity. For long and slender floating structures, such as FPSO platforms, a small change in the center of Pitch rotation would result in significant change in the overall motions in its fore and aft regions. Therefore, it is of high importance to obtain a better understating of the instantaneous position of the body center of rotation in Heave and Pitch response.

This paper investigates the position of the Instantaneous Center of Rotation in Pitch Response of a scaled down model of a FPSO platform under different regular wave conditions. The investigation uses basic kinematics equations for rigid body, defining the 6 degrees of freedom of the rigid body motion from a finite number of markers installed in the model. A high quality tracking system captures the markers positions in order to define the rigid body at each instant of time. For an initial approach, the study considers the response due to head waves seas with experimental validation.

This content is only available via PDF.
You do not currently have access to this content.