DNV-RP-F108 [1] was first issued in 2006. The Recommended Practice was developed to provide guidance on testing and analyses for fracture control of pipeline girth welds subjected to cyclic plastic deformation, e.g. during installation by the reeling method, but also for other situations where pipelines may be subjected to large plastic strains. The Recommended Practice was based upon a Project Guideline developed within the Joint Industry Project “Fracture Control for Installation Methods Introducing Cyclic Plastic Strain - Development of Guidelines for Reeling of Pipelines”.

The new revision is based on the extensive experience and knowledge gained over the years use of the previous versions, as well as new knowledge from recent R&D projects.

The main content of Appendix A of DNV-OS-F101 (now DNVGL-ST-F101) [2] have been transferred to DNVGL-RP-F108. Only the requirements relative to ECA and testing have been retained in DNVGL-ST-F101 [2].

The new revision has got a new number and new title, i.e. DNVGL-RP-F108, “Assessment of Flaws in Pipeline and Riser Girth Welds”.

This paper lists the fundamental changes made in the new RP from the old Appendix A of the previous DNV-OS-F101 and discusses some of the changes, although within this paper it is not possible to cover all changes. The focus is on clarification of use of S-N versus the fracture mechanics approach for fatigue life computation, classification of fatigue sensitive welds, calculations of more accurate crack driving force by re-introduction of the plate solution, for which a new Lr,max (plastic collapse) calculation and a modified way to account for residual stresses have been specified. The RP presents new assessment procedures pertaining to use of finite element analyses for fracture mechanics assessments. A unique feature of the new RP is the guidance on sour service testing and assessments included in the Appendix C of the document to support pipeline/riser ECAs to develop flaw acceptance criteria for NDT.

This content is only available via PDF.
You do not currently have access to this content.