This study investigates the use of efficient surrogate model development with the help of polynomial chaos expansion (PCE) for the prediction of the long-term extreme surge motion of a simple moored offshore structure. The structure is subjected to first-order and second-order (difference-frequency) wave loading. Uncertainty in the long-term response results from the contrasting sea state conditions, characterized by significant wave height, Hs, and spectral peak period, Tp, and their relative likelihood of occurrence; these two variables are explicitly included in the PCE-based uncertainty quantification (UQ). In a given sea state, however, response simulations must be run for any sampled Hs and Tp; in such simulations, typically, a set of random phases (and deterministic amplitudes) define a wave train consistent with the defined sea state. These random phases for all the frequency components in the wave train introduce additional uncertainty in the simulated waves and in the response. The UQ framework treats these two sources of uncertainty — from Hs and Tp on the one hand, and the phase vector on the other — in a nested manner that is shown to efficiently yield long-term surge motion extreme predictions consistent with more expensive Monte Carlo simulations, which serve as the truth system. Success with the method suggests that similar inexpensive surrogate models may be developed for assessing the long-term response of various offshore structures.

This content is only available via PDF.
You do not currently have access to this content.