The present paper deals with the estimation of the short-term extreme motions of a spar floating wind turbine in parked rotor conditions, through a 1:30 at-sea experiment, carried out at the Natural Ocean Engineering Laboratory (NOEL) of Reggio Calabria (Italy). Thanks to some favorable local environmental conditions of the site, several wind-generated sea states with relatively low significant wave height (Hs < 0.50 m) have been collected during the experiment. These sea states are scale models of ocean storms, which are relevant hydrodynamic design conditions for the spar platform. The 30-minutes extreme values of the model structure motions have been estimated for all the six degrees of freedom, using the Weibull Tail Method (WTM), and the results obtained are presented in the paper. Such estimations are 1:30 scale models of the 3-hours extreme values of the spar motions in parked rotor conditions and may be directly used for design purposes.

This content is only available via PDF.
You do not currently have access to this content.