Here, we experimentally studied the vortex-induced motion (VIM) of a free-standing riser (FSR; 1:65 scale model) with and without a porous metal screen (‘sheath’) placed co-centrically around the buoyancy can (BC). Specifically, we investigated the effects of mesh orientation (square and square rotated 45° in its own plane) and screen-BC diameter ratio (1.1 and 1.2) over a range of flow velocities. BC motions were recorded with a submersible camera; and inline (IL) and cross-flow (CF) amplitudes were then estimated with a motion tracking software. As expected, the installation of the screen changed the natural frequency of the models. Furthermore, the screen increased the reduced velocity at which the lock-in occurred, delaying it by a factor of ∼1.2 and ∼1.4 for the CF and IL respectively. All sheathed models had a prominent reduction in IL amplitudes compared to the bare/unsheathed BC; and at smaller flow velocities, the sheathed models also exhibited significantly lower CF motions, particularly those with a greater screen-BC diameter ratio.

This content is only available via PDF.
You do not currently have access to this content.