Making CFD with the capability of predicting ship scale design performance, rather than relying on scale model tests will help reduce design costs and provide a greater opportunity to develop more energy efficient ship designs. The key objective of this paper is to perform a fully nonlinear unsteady RANS simulation to predict the ship motions and resistance of a full scale DTMB 5415 ship model. The analyses are performed at design speeds, at a certain Fr number, using in-house computational fluid dynamics (CFD) to solve RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations. RANS equations are solved by finite difference method and PISO arithmetic. Computations have been made using structured grid with overset technology. Simulation results shown that the total resistance coefficient in calm water at service speed is predicted by 2.36% error compared to the related towing tank results. The ship resistance for different scale demonstrated that the current in-house CFD model could predict the resistance in a reasonable range of the EFD data. The comparison of flow field for wave pattern for different scale model were analyzed and discussed.

This content is only available via PDF.
You do not currently have access to this content.