Predicting ship maneuverability is one of the important topics in ship engineering. However because of the huge difference between model and full scale Reynolds number (Re), it is almost impossible to predict full scale ship maneuverability using conventional methods such as model test. On the other hands, with the developments of computational technologies and computational fluid dynamics (CFD) techniques, CFD simulations are widely applied on ship maneuvering problems (e.g. Stern et al., 2011). Moreover some of the researchers start the CFD simulation with full scale Re especially on propulsion problems (e.g. Tezdogan et al., 2015) which showing reasonable results.

Therefore, in this paper, captive maneuvering simulations (rudder angle test) in model/full scale Re on KVLCC2 are carried out using Reynolds-averaged Navier–Stokes (RANS) solver NAGISA (Ohashi et al., 2014) with the overset gird method UP_GRID (Kodama et al., 2012). And the results between model and full scale simulations are compared in maneuvering coefficients and flow field to reveal the scale effect on ship maneuverability.

This content is only available via PDF.
You do not currently have access to this content.