Subsea jumper is the steel pipe structure to connect wellhead and subsea facilities such as manifolds or processing units in order to transport the produced multiphase flows. Generally, the jumper consists of a goalpost with two loop structures and a straight pipe between them, carrying the multiphase oil and gas from the producing well. Due to the jumper pipe characteristic geometry and multi-fluid properties, slug flows may take place, creating problematic fluctuating forces causing the jumper oscillations. Severe dynamic fluctuations cause the risk of pipe deformations and resonances resulting from the hydrodynamic momentum/pressure forces which can lead to unstable operating pressure and decreased production rate. Despite the necessity to design subsea jumper with precise prediction on the process condition and the awareness of slug flow risks, it is challenging to experimentally evaluate, identify and improve the modified design in terms of the facility scale, time and cost efficiency. With increasing high computational performance, numerical analysis provides an alternative approach to simulate multiphase flow-induced force effects on the jumper. The present paper discusses the modelling of 3-D flow simulations in a subsea jumper for understanding the development process of internal slug flows causing hydrodynamic forces acting on the pipe walls and bends. Based on the fluctuating pressure calculated by the fluid solver, dynamic responses of the jumper pipe are assessed by a one-way interaction approach to evaluate deformation and stress. A potential resonance is discussed with the jumper modal analysis. Results from the structural response analyses show dominant multi-modal frequencies due to intermittent slug flow frequencies. Numerical results and observed behaviors may be useful for a comparison with other simulation and experiment.

This content is only available via PDF.
You do not currently have access to this content.