Fluctuating wave force on a bluff body is of great significance in many offshore and marine engineering applications. We present a Convolutional Neural Network (CNN) based data-driven computing to predict the unsteady wave forces on bluff bodies due to the free-surface wave motion. For the full-order modeling and high-fidelity data generation, the air-water interface for such wave-body problems must be captured accurately for a broad range of physical and geometric parameters. Originated from the thermodynamically consistent theories, the physically motivated Allen-Cahn phase-field method has many advantages over other interface capturing techniques such as level-set and volume-of-fluid methods. The Allen-Cahn equation is solved in the mass-conservative form by imposing a Lagrange multiplier technique. While a tremendous amount of wave-body interaction data is generated in offshore engineering via both CFD simulations and experiments, the results are generally underutilized. Design space exploration and flow control of such practical scenarios are still time-consuming and expensive. An alternative to semi-analytical modeling, CNN is a class of deep neural network for solving inverse problems which is efficient in parametric data-driven computation and can use the domain knowledge. It establishes a model with arbitrarily generated model parameters, makes predictions using the model and existing input parametric settings, and adjusts the model parameters according to the error between the predictions and existing results. The computational cost of this prediction process, compared with high-fidelity CFD simulation, is significantly reduced, which makes CNN an accessible tool in design and optimization problems. In this study, CNN-based data-driven computing is utilized to predict the wave forces on bluff bodies with different geometries and distances to the free surface. The discrete convolution process with a non-linear rectification is employed to approximate the mapping between the bluff-body shape, the distance to the free-surface and the fluid forces. The wave-induced fluid forces on bluff bodies of different shapes and submergences are predicted by the trained CNN. Finally, a convergence study is performed to identify the effective hyper-parameters of the CNN such as the convolution kernel size, the number of kernels and the learning rate. Overall, the proposed CNN-based approximation procedure has a profound impact on the parametric design of bluff bodies experiencing wave loads.

This content is only available via PDF.
You do not currently have access to this content.