In recent years, tidal current energy has gained wide attention for its abundant resource and environmentally friendly production. This study focuses on analyzing dynamic behavior of a three-bladed vertical axis tidal current turbine. The multibody dynamics code MBDyn is used in the numerical simulation. It performs the integrated simulation and analysis of nonlinear mechanical, aeroelastic, hydraulic and control problems by numerical integration. In this study, tidal current turbine is idealized as an assembly of flexible beams including axis of rotation, arms and blades. We firstly conduct a modal analysis on the tidal current turbine and validate the model with the results obtained by ANSYS. The natural frequencies of blades with different size parameters are compared and the corresponding mode shapes are presented. Next, a parametric study was performed to investigate the effect of internal force on the dynamic response. It is concluded that the proposed method is accurate and efficient for structural analysis of tidal current turbine and this flexible multibody model can be used in the fluid-structure-interaction analysis in the future.

This content is only available via PDF.
You do not currently have access to this content.