In the WiFi-JIP project, the impact of steep (and breaking) waves on a monopile support structure was studied. Observations during model tests showed that large tower top accelerations occur due to a slamming wave. Using experiments and simulations results, a new formulation of the design load for a slamming wave was developed. Instead of the embedded stream function, as applied in industry, the wave train is generated with the nonlinear potential flow code Oceanwave3D. On the wave train a set of conditions is applied to find the individual waves, that are closest to the prescribed breaking wave and most likely cause a slamming impact.
To study the effect of the new slamming load formulation on different sized offshore wind turbines, aero-hydroelastic simulations were performed on a classic 3MW wind turbine, a modern 4MW wind turbine and a future 10MW wind turbine. The simulations are performed with and without a slamming wave load. The slamming has a clear effect on the tower top acceleration. Accelerations due to the wave impact are highest for the 3MW model at the tower top and at 50m height. A serious tower top acceleration of almost 7m/s2 due to wave slamming is found for the 3MW turbine. This is an increase of 474% compared with the case of Morison wave loads only.