The Mutriku breakwater wave power plant is located in the Bay of Biscay, in Basque Country, Spain. The plant is based on the oscillating water column (OWC) principle and comprises 16 air chambers, each of them equipped with a Wells turbine coupled to an electrical generator with a rated power of 18.5 kW. The IDMEC/IST Wave Energy Group is developing a novel self-rectifying biradial turbine that aims to overcome several limitations of the Wells turbine, namely the sharp drop in efficiency above a critical flow rate. The new turbine is symmetrical with respect to a mid-plane perpendicular to the axis of rotation. The rotor is surrounded by a pair of radial-flow guide vane rows. Each guide vane row is connected to the rotor by an axisymmetric duct whose walls are flat discs. In the framework of the “OPERA” European H2020 Project, the new biradial turbine will be tested at Mutriku and later will be installed and tested on a floating OWC wave energy converter — the OCEANTEC Marmok-5’s — to be deployed at BiMEP demonstration site in September of 2017. The aim of the present paper is to perform critical comparisons of the performance of the new biradial and the Wells turbine that is presently installed at Mutriku. This is based on results from a time-domain numerical model. For the purpose, a new hydrodynamic frequency domain model of the power plant was developed using the well know WAMIT software package. This was used to build a time-domain model based on the Cummins approach.

This content is only available via PDF.
You do not currently have access to this content.