Liquid loading is the mechanism that is associated with increased liquid hold-up and liquid back flow at lower gas flow rates in gas production wells. In laboratory, most liquid loading experiments are performed at fixed gas and liquid rates (mass flow controlled). In the field, the well behavior is a coupled well-reservoir system in which the reservoir results in a pressure or mass flow controlled inflow, depending on the reservoir characteristics. In this paper results are presented which have been performed with a pressure controlled vessel attached to a vertical pipe. The pressure drop between the vessel was varied to represent reservoir characteristics from tight to prolific. The goal of the experiments was to evaluate the relation and the time ‘trajectory’ between the minimum in the pressure drop curve and the actual flooding point. From these experiments it was concluded that the stability is determined by the overall pressure drop curve. That is the pressure drop from vessel to separator and not the tubing pressure drop curve. This stability point can be at a higher or lower velocity than the actual loading/flooding point and therefore, loading is not the cause of the production decrease. That also means stable production is possible below the flooding point in slugging conditions. In future, the distinction between stable flow and loading/flooding must be made more strict.

This content is only available via PDF.
You do not currently have access to this content.