Petroleum engineers are aware of the advantages of directional and horizontal wells. In case of intermediate deep wells, the preference is the customary solution, in which a well is drilled vertically to the kick off point, and then moved directionally to the reservoir level. Nowadays, due to the advent of extended reach drilling, this approach does not satisfy the meant goal anymore. In extended reach drilling, the concern lies on the drill pipe’s strength. Because of the great depth of the borehole, the torque and tension below the drill floor increase and could reach the drill pipe’s strength. Therefore, in order to extend the wellbore reach, it is necessary to minimize the torque and drag. Several authors have mentioned that catenary profile may help reduce torque and drag.

The purpose of the paper is to analyze the mechanics of the drill string, and to understand the stress distribution along the drill string and the geometry of the well configurations while bringing the borehole from a vertical to a horizontal position. . This will be achieved by means of an analytical comparison between the catenary profiles and the conventional well configurations.

A novel catenary profile which improves the previous models is also presented in this paper. The modified catenary has a larger curvature of the drill string; particularly in the upper parts of the borehole the bending stresses are small. The modified catenary profile, which resembles a free hanging cable, can be a novel method in directional drilling of deep and extended reach wells. Thus, the build rate in the modified catenary is being continuously increased until it reaches the desired position. It is different from conventional methods used especially in horizontal drilling to connect the vertical and the horizontal section, where the build rate is kept constant.

The focus of this paper lies on the study of catenary’s geometry as a complex well path and the induced stress. Different approaches are used and compared.

This content is only available via PDF.
You do not currently have access to this content.