This paper presents the applications of an efficient hybrid time-domain simulation model for predicting moored Sevan-floater motions in irregular waves and finite water depth. The irregular incident waves are modeled by the extended Boussinesq equations, which can capture wave-wave interactions and the low-frequency long waves accurately in finite and shallow water depth. By imposing the incident wave kinematics on the surface of the floater, a panel model based on Rankine source method is applied for the calculation of wave forces and corresponding floater motions. The contributions from low-frequency components in incident waves as well as their diffraction effects are included in the wave force calculations. Validation of the irregular waves simulated by the present numerical model are performed against experimental data. Then, the simulated moored floater motions are compared with model test results and results based on Newman’s approximation. The general good agreements with experimental results demonstrate the present model can be used as an alternative for this problem while Newman’s approximation shows non-conservative results.

This content is only available via PDF.
You do not currently have access to this content.