It is important to predict wave impact and structural responses of ship and offshore structures in extreme sea conditions. There are advantages to apply Lagrangian particle methods to simulate highly nonlinear breaking free surface flow and fluid-structure interactions (FSI). In this paper, an improved moving particle semi-implicit (MPS) method was developed to solve the FSI problems. At each time step, the fluid motions and the structural responses are solved. For flow computations, a modified mixed source term method and an improved free surface identification method were adopted to suppress pressure oscillations. Moreover, a particle collision model was used to enhance the numerical stability and avoid nonphysical solutions. The discretized Poisson equations for pressure were solved by a parallel version of the bi-conjugate gradient stabilized method based on the message passing interface (MPI) approach. For structural responses, solids were treated as isotropic elastic particles. Validation studies were carried out for cases of 2D dam breaking and its interaction with a rubber gate. The numerical solutions are in good agreement with experimental data and other published numerical results.

This content is only available via PDF.
You do not currently have access to this content.