Dry tree top-tensioned risers (TTRs) are widely used on floating production systems such as TLPs and Spars for drilling, completion, workover and production. The interference between neighboring TTRs is an important consideration which has a direct impact on the total TTR payload budget and the wellbay size for floater sizing and cost. Since the realistic sizing of a floater is essential towards the concept selection process for a field development, TTR interference should be addressed at the early stages of an offshore oilfield development. If the floater is a tension leg platform (TLP) and the field has strong current with associated extreme waves, riser interference may be very challenging and can have direct impact on riser design and the sizing and layout of the TLP. The waves and the oscillating motions of the TLP will have effects on riser interference. The oscillating motion of the TLP can excite the vibrational motion of the risers, and the wave-induced velocity of water particles and the motions of the risers with the movement of the TLP increases the relative flow acting on each riser. The combined effects will increase the deflection of the risers and thus the likelihood of riser interference. The industry has not seen an acceptable interference analysis approach yet which can account for the combined effects of current, waves, and TLP motions.

This paper proposes two engineering approaches for the interference analysis of top tensioned risers for tension leg platforms with the combined effects of current, surface waves, and associated floater motions being addressed.

This content is only available via PDF.
You do not currently have access to this content.