In the last thirty years the attention of the offshore pipeline industry has been strongly focused on submarine pipelines crossing harsh environments and subject to severe operating conditions of temperature and pressure.

Pipeline structural integrity may be threaten by large free-spanning sections between rocky peaks and deep depressions that may be coupled with the pipeline propensity to develop lateral/vertical deflection due to severe service conditions (high pressure/high temperature). For short flowlines, pipeline walking is an additional issue to be verified and faced during design and the application of an integrated approach between flow assurance, installation, geotechnics and pipeline design is a must.

All these features characterize new load scenarios for which intervention works are mandatory to control the development of excessive loads and deformations within acceptance criteria. 3-Dimensional Finite Element Models permit to anticipate the pipeline global response under design loads taking into account the expected (during design phase) and/or actual (after measurements of the as-built) 3-Dimensional pipeline configuration. In case that mitigation measures are to be installed along the pipeline route, their effectiveness can be verified and optimized. Potential failure events in the most promising mitigation measure strategy can be investigated and anticipated at design stage. This paper describes the most relevant capability of the pre- and post-processing tools developed in MATLAB environment and based on ABAQUS Finite Element.

This content is only available via PDF.
You do not currently have access to this content.