Offshore structures are subjected to irregular loading spectra due to their exposure to waves and wind. The environmental loads cause variable amplitude stress histories on critical spots of the structures. The existing engineering methodology (adopted by most of the national standards) to estimate the accumulated fatigue damage is based on Miner’s rule for crack initiation. Paris rule and its modifications are used for crack propagation prediction. However, Miner’s rule is a linear model and does not take into account the sequence effect of loading blocks with different stress amplitude. On the other hand, the widely used Paris rule does not take into account the load interaction effects (e.g. overload-induced crack growth retardations). The prediction of the crack growth rate and the crack growth direction of mixed mode cracks is an important issue as well. Aim of the present paper is the analysis of the weaknesses of the engineering tools for fatigue analysis, and the demonstration of the advantages of non-linear damage functions and crack propagation models. A review of models for fatigue crack initiation and growth (for mode I or mixed mode loading) developed by the author is presented. Representative results are discussed and commented.

This content is only available via PDF.
You do not currently have access to this content.