A method of estimating elastic buckling strength of a non-spherical tank intended for the use in LNG carriers is presented. Partially filled condition that causes combined meridional tension and circumferential compression is considered. Analytical expression of pre-buckling stress distributions is derived based on membrane shell theory. These stresses are applied to the elastic buckling strength analysis employing Hutchinson’s solution for a toroidal shell segment under similar stress condition. The buckling strength of a spherical shell is highly sensitive to initial shape imperfections, but these are not considered as a most fundamental case. The predicted stress distributions and elastic buckling strength are compared with those calculated by the 3D shell finite element analysis.

This content is only available via PDF.
You do not currently have access to this content.