Offshore pipelines are occasionally subjected to accidental impact loads from trawl gear or anchors, which may damage the pipeline. This study reports the results of material and component tests carried out on offshore steel pipes and an adhering polymer coating. The polymer coating is primarily applied for corrosion protection and thermal insulation. Despite not necessarily being designed for it, the polymer coating does have some structural capacity, and it is this capacity that is the main topic of investigation herein. In design codes and guidelines, coating is traditionally not accounted for when determining the energy absorbed by a pipeline during impact. This makes the estimates provided overly conservative. The goal of this experimental work is then to investigate whether a typical polymer coating makes any significant contribution to the energy absorption properties of a pipeline cross-section during impact. To this end, both dynamic and quasi-static denting tests of full-scale pipe cross-sections are carried out. All pipes tested have a length of approximately 1 m. The sharpest indenter from the guidelines is used, as a sharper indenter is more likely to penetrate compared with a blunter one. Based on the tests, the polymer coating can absorb a notable part of the kinetic energy delivered to the system. More tests with different coating and pipe thicknesses are needed to quantify this effect.

This content is only available via PDF.
You do not currently have access to this content.