Wave loads from breaking waves on offshore wind turbine (OWT) substructures in shallow waters still remain uncertain. The interaction of breaking waves with structures is characterized by complex free surface deformations, instantaneous impact of the water mass against the structure and consequently large wave forces on the structures. The main objective of the paper is to investigate wave impact pressures and kinematics during the interaction of breaking waves with a vertical cylinder using the open-source CFD model REEF3D. The model is based on the Reynolds-Averaged Navier-Stokes (RANS) equations coupled with the level set method (LSM) and k-ω turbulence model. Three wave impact conditions are considered in the present study. The numerically simulated free surface deformations around the cylinder during the breaking wave interaction are also presented for different wave impact conditions. For three wave impact conditions, the wave impact pressure and the horizontal and vertical components of the particle velocity are computed in front of the cylinder and analyzed. The pressure and velocity profile at their maximum values are also examined and discussed. In addition, the total force is calculated for three breaking conditions and they are correlated with the pressure and kinematics during the interaction.

This content is only available via PDF.
You do not currently have access to this content.