This paper focuses on the application of a ship hull form multi-disciplinary optimization (MDO) system based on the computational fluid dynamics (CFD). Using the iSIGHT software, the MDO system integrates an automatic geometry transformation program and high-fidelity CFD solvers for different sub-disciplines. Hydrodynamics analysis subsystem includes resistance, seakeeping and stability modules. The resistance and seakeeping is analyzed by commercial potential-flow CFD codes, the stability is assessed by in-house code. The geometry variation output can be automatically used by the numerical solvers. By means of the design of experiment (DOE) technique, a neural network metamodel is trained to predict short term motion response of the derived ships efficiently.

The system has been used in a seismic vessel’s hull form optimization to minimize the resistance and maximize the long term seakeeping operability index. Meanwhile, the stability in waves is concerned as a constraint. The hybrid MIGA-NLPQL optimization algorithm is applied for a global-to-local search in resistance optimization. For the synthesis optimization, a Pareto optimal solution set has been obtained and the final solution is achieved by trade-off analysis of the solution set. The entire automatic optimization process can be used for the preliminary design of new high performance vessels.

This content is only available via PDF.
You do not currently have access to this content.