Drilling fluids play an important role in safe and efficient drilling operations. Wellbore stability, formation integrity, drill string lubrication, and cuttings transport are among their main requirements. The removal of a cuttings bed is one of the major difficulties while trying to keep up a steady drilling progress. Deviated and long horizontal wellbore sections provide challenges not only to the drilling equipment in use, but also to the fluids. Cuttings accumulate easily on the bottom of a wellbore section due to gravity and can therefore reduce hole cleaning efficiency.

Cuttings transport is highly dependent on the properties of the drilling fluid. Viscosity, density and gel strength are among the key parameters. Drilling fluids have in general a complex composition with either water or oil as a base substance. Demanding operating conditions, for example high temperature difference from topside to the deep downhole sections or varying shear rates throughout the wellbore, also influence the properties of the fluids during operation. Drilling fluids have to be adapted to all these different drilling situations.

The aim of the full project is to compare different water- and oil-based drilling fluids regarding their hole cleaning abilities. As part of the experimental study where drilling fluids are circulated in a 10 m long flow-loop test section with a free-whirling rotating inner drill string, rheological characterization with an Anton Paar MCR rheometer is performed. These measurements include determination of flow properties, yield stress and viscosity-temperature dependence. The results are correlated with the industry standard procedures for the testing of drilling-fluid properties with Fann 35 viscometers (API/ ISO standards). Measurements performed on viscometers at the oil rigs are done to receive fast results in order to control the drilling operation. In contrast, rheometer measurements provide the possibility of a deeper comprehension of the rheological properties of the drilling fluids due to the advanced measurement system.

This work presents rheological properties for a typical oil-based drilling fluid commonly used on the Norwegian Continental Shelf, and includes a comparison with two other oil-based drilling fluids based on previously published work. The rheometer results are analyzed in relation to the flow loop experiments and to the viscosity data measured in accordance with the API/ISO specifications. The results from the rheological comparison together with the results from the flow-loop experiments are expected to make an influencing contribution to the question of why various drilling fluids perform so differently in terms of cuttings transport.

This content is only available via PDF.
You do not currently have access to this content.