This study determines facies distribution in a clastic reservoir using a hidden Markov model combined with an Expectation-Maximization algorithm. Iterating expectation and maximization steps of the algorithm builds the hidden Markov model by tuning the model parameters including initial state distribution, state transition probability distribution, and observable symbol probability distribution. Optimized model parameters contribute to improving the predictability of facies distribution along the well trajectory using core and logging data.

This content is only available via PDF.
You do not currently have access to this content.