This paper evaluates the estimated ultimate recovery for 10-year operation at a shale gas reservoir, implementing FMM (Fast Marching Method) as a surrogate model of full-scale numerical simulation and Monte Carlo simulation as a tool for accessing the uncertainty of FMM-based proxy parameters. Sensitivity analysis shows the significant properties affecting the gas recovery that are enhanced permeability, matrix permeability, and porosity in sequence. Using the statistical distributions of these parameters, this study determines P10, P50, and P90 of the 10-year cumulative gas production and compares them with the values from full-physics simulations. The computing time based on the proxy model is much smaller than that of the full-scale simulations while the prediction accuracy is acceptable. FMM can forecast the production profiles reliably without time-consuming simulation and the integration of Monte-Carlo simulation is able to evaluate the uncertainty of gas recovery, quantitatively.

This content is only available via PDF.
You do not currently have access to this content.