Arctic remains the final frontier in the oil and gas exploration regime. The diminishing presence of ice opens up the region for longer and wider exploration. However, even with the assistance of ice management, the threat of broken first-year level ice stays ubiquitous. Calculation of ice load for such ice features bases on the established formulation developed by observation from full-scale measurements and model test data over the years. However, the formulation mostly relies on the data derived from fixed structures or icebreakers. Such estimations of ice load do not account for the stiffness compliance afforded by mooring system of a floater, such as a semi-submersible or a spar. A floating oil and gas exploration system offers a number of advantages over the fixed platforms, such as the option to deploy elsewhere during the off-season in the Arctic as well as connecting and disconnecting during severe ice events such as an approaching iceberg or multi-year ice ridge. However, the current practice of employing dynamic ice load time-history available in ISO19906 or similar codes fails to account for the presence of the mooring system on these floating platforms, directly resulting in a lack of confidence in the derived response of the floater. This study aims to address this issue by developing a dynamic ice-load time-history algorithm, which, can readily couple with commercially available hydrodynamics and mooring system analysis software. This investigation puts forward the hypothesis that the evolution of ice load vs. ice feature displacement with respect to the structure remains same for both fixed and floating structures. However, the underlying assumption is that the size of the ice features remains comparable. This hypothesis accounts for the prominent influence of the size effect on the breaking strength of ice. The difference between the behavior of a fixed and a floating structure under ice load is due to the relative motion between the floater and the ice feature. The developed coupled ice-load-function accounts for this by including the relative displacement between the floater and the ice feature in the formulation. This study uses the semi-empirical formulation originally derived by Croasdale to calculate the main ice load components for a fixed structure with downward breaking slope. Subsequently, this study uses this coupled ice load subroutine to compare against the full-scale measurement data found in the literature for a floater with downward-sloped hull specifically designed to assist in ice breaking. A comparison against the peak load observed during full-scale measurements on a floater in the Arctic waters validates the proposed approach. Next, this study utilizes the coupled analysis to derive the displacement, velocity, and acceleration response of the studied floater for a range of ice parameters, such as the drift speed and thickness. Additionally, this study performs a parametric study by varying the downward breaking slope angle of the floater, the mooring configuration, and the water depth. Finally, this study summarizes the observed behavior of the floater under different ice parameters as well as floater shape and mooring systems parameters.

This content is only available via PDF.
You do not currently have access to this content.