For ultra large ore carriers, springing response should be analyzed in the design stage since springing is the steady-state resonant vibration and has an important effect on the fatigue strength of hull structure. The springing response of a 550,000 DWT ultra large ore carrier has been studied by using experimental and numerical methods. A flexible ship model composed of nine segments was used in the experiment. The model segments were connected by a backbone with varying section, which can satisfy the request of natural frequency and stiffness distribution. The experiments in regular waves were performed and the motions and wave loads of the ship were measured. The experimental results showed that springing could be excited when the wave encounter frequency coincides with half or one-third the flexural natural frequency of the ship. In this paper, the analysis of the hydroelastic responses of the ultra large ore carrier was also carried out using a 3-D hydroelastic method. Comparisons between experimental and numerical results showed that the 3-D hydroelastic method could predict the motions and the vertical bending moments quite well. Based on this numerical method, the fatigue damage was estimated and the contribution of springing was analyzed.

This content is only available via PDF.
You do not currently have access to this content.