This paper conducts a RANS solver with k-ε turbulent closure to simulate hydrodynamics of wave run-ups of three types of wind turbine foundations, including monopile, gravity-based and tripod support structures. In this study, a semi-empirical formula is developed and calibrated based on velocity stagnation head theory by means of a CFD model, FLUENT. The numerical results are validated by the experimental data, which were implemented in the Large Wave Flume (GWK) of the Coastal Research Centre (FZK) in Hannover and published by Mo et al. (2007) [1]. It is indicated that the difference of normalized run-up envelopes among these wind turbine foundations is smaller for higher wave steepness than those for lower wave steepness. It is also obvious that the tendency of maximum run-up heights is considerably correlated with higher nonlinearity, whereas an opposite trend is obtained for minimum run-up envelops. Eventually, a calibrated run-up parameter is obtained by the present numerical simulation and found that the value becomes smaller with respect to higher nonlinearity and run-up heights.

This content is only available via PDF.
You do not currently have access to this content.