A time domain Rankine source solver is extended to compute the wave added resistance of ships. The proposed approach applies the momentum conservation principle on the near field fluid volume enclosed by the wet surface of a floating body, the free surface and a control surface. The wave added resistance is then calculated by the integration over the control surface of the fluid velocities and free surface elevations. To be able to incorporate the proposed method with the Rankine source code, an interpolation scheme has been developed to compute the kinematics for the off-body points close to (or on) the free surface. Two Wigley ship models, a containership model S175 and a tanker model KVLCC2 are used to validate the present method. In general good agreement is found comparing with the model test data. The convergence behavior is examined for the proposed method including the selection of the time step and location of the control surface. Both Neumann-Kelvin and double body linearization methods are evaluated with the proposed method. It is found that the Neumann-Kelvin linearization can only be applied for slender ship hull, whereas double body method fits also for blunt ships. It is suggested to apply the proposed method with double body linearization to evaluate the wave added resistance of ships with a control surface close to the ship hull.

This content is only available via PDF.
You do not currently have access to this content.