We analyze the interactions between a subsurface shear current of uniform vorticity and a moving surface disturbance of anisotropic shape which generates surface gravity waves. The problem extends previous analysis of ship waves in the presence of a shear current varying linearly with depth, now also accounting for the three dimensional shape of real ships, in order to study the interplay of aspect ratio and the shear current. Based on general solutions derived previously, we apply an elliptical Gaussian pressure disturbance at the surface moving at constant velocity as a model for a real “ship”. Wave contributions in the far field and expressions for the Mach angle (of maximum wave amplitude) based on asymptotic expressions for high Froude numbers, are derived thereafter. Through numerical calculations we present wave patterns, as well as Kelvin and Mach angles, at moderate Froude numbers under different shear strenghts and aspect ratios. Results show that the aspect ratio has negligible effect on the value of the critical shear vorticity and Kelvin angle, whereas a subtle interplay of aspect ratio and shear strenght is found to affect the Mach angle at moderate Froude numbers.

This content is only available via PDF.
You do not currently have access to this content.