Seabed trench profile has significant effect on the fatigue damage of steel catenary riser near touchdown point. This study briefly demonstrates an approach in literature to determine the seabed trench induced by wave frequency response based on the cubic polynomial model. In this approach, a criterion for the matching between catenary riser and seabed trench is proposed, which is an optimization problem, and needs iterative static analysis of catenary riser. Based on the criterion, the sensitivity of the trench length and position to three parameters is parametrically studied: riser mass per unit length, ratio of horizontal span to vertical span of catenary part, trench depth. The obtained data are employed to fit the equations of trench length and position, which is taken as surrogate model since the iterative static analysis is very complicated. For completeness, the validation against data obtained from hysteretic seabed model is also illustrated. Based on the surrogate model, this study investigates the effect of trench depth on the fatigue damage near touchdown and the effect of the low frequency response on the seabed trench, and some useful conclusions are obtained.

This content is only available via PDF.
You do not currently have access to this content.