Slug flow in horizontal pipelines and riser systems in deep sea has been proved as one of the challenging flow assurance issues. Large and fluctuating gas/liquid rates can severely reduce production and, in the worst case, shut down, depressurization or damage topside equipment, such as separator, vessels and compressors.
Previous studies are primarily based on experimental investigations of fluid properties with air/water as working media in considerably scaled down model pipes, and the results cannot be simply extrapolated to full scale due to the significant difference in Reynolds number and other fluid conditions. In this paper, the focus is on utilizing practical shape of pipe, working conditions and fluid data for simulation and data analysis. The study aims to investigate the transient multiphase slug flow in subsea oil and gas production based on the field data, using numerical model developed by simulator OLGA and data analysis.
As the first step, cases with field data have been modelled using OLGA and validated by comparing with the results obtained using PIPESYS in steady state analysis. Then, a numerical model to predict slugging flow characteristics under transient state in pipeline and riser system was set up using multiphase flow simulator OLGA. One of the highlights of the present study is the new transient model developed by OLGA with an added capacity of newly developed thermal model programmed with MATLAB in order to represent the large variable temperature distribution of the riser in deep water condition. The slug characteristics in pipelines and temperature distribution of riser are analyzed under the different temperature gradients along the water depth. Finally, the depressurization during a shut-down and then restart procedure considering hydrate formation checking is simulated. Furthermore, slug length, pressure drop and liquid hold up in the riser are predicted under the realistic field development scenarios.