In this paper the implementation of two types of boundaries, periodic and fixed in-plane boundaries, for a detailed finite-element model of flexible risers is discussed. By using three-dimensional elements, all layer components are individually modelled and a surface-to-surface frictional contact model is used to simulate their interaction. The approach is applied on several riser models with various lengths and layers. It is shown that the model with periodic boundaries can be effectively employed in a fully-nested (FE2) multiscale analysis based on computational homogenization. In fact, in this model only a small fraction of a flexible pipe is needed for a detailed nonlinear finite-element analysis at the small scale. The advantage of applying periodic boundary conditions in capturing the detailed nonlinear effects and the efficiencies in terms of significant CPU time saving are demonstrated.

This content is only available via PDF.
You do not currently have access to this content.