In this paper, we focus on vortex-induced vibration (VIV) of a free-hanging riser attached to a vessel under irregular wave conditions. The global in-plane responses of the hanging riser are firstly studied numerically in order to generate the equivalent current profile under vessel motion, and a simplified irregular vessel motion-induced VIV prediction methodology is then proposed based on the understanding from previous experimental observations and literature review. Further comparison on irregular vessel motion-induced VIV and ocean current-induced VIV at the same operation site with the same return period is performed to emphasize the importance of vessel motion-induced VIV. Numerical results highlight that vessel motion-induced VIV can cause similar stresses, fatigue damage and drag amplification similar to the steady ocean current cases, especially to the operation site like Norwegian Sea where strong wave field exists with mild current condition. It should be mentioned that although the simplified methodology proposed in this paper requires further experimental validation, it is believed that the presented numerical pre-study would help the industry and the researchers to have initial understanding on the possible occurrence of vessel motion-induced VIV. We further show the similarities and differences of vessel motion-induced VIV with respect to the ocean current-induced VIV and its implications on riser design and operation.

This content is only available via PDF.
You do not currently have access to this content.